Курс за обучение по Deep Learning for NLU: Beyond NLP Models
Този курс се фокусира върху усъвършенствани архитектури за дълбоко обучение, пригодени специално за Natural Language Understanding (NLU), изследвайки как NLU се различава от традиционните модели на NLP. Участниците ще придобият практически опит в изграждането на модели за дълбоко обучение за семантично разбиране и ще изследват бъдещите тенденции в разбирането на езика.
Това водено от инструктор обучение на живо (онлайн или на място) е насочено към професионалисти на напреднало ниво, които желаят да се специализират в авангардни техники за дълбоко обучение за NLU.
До края на това обучение участниците ще могат:
- Разберете основните разлики между NLU и NLP моделите.
- Приложете усъвършенствани техники за дълбоко обучение към NLU задачи.
- Изследвайте дълбоки архитектури като трансформатори и механизми за внимание.
- Използвайте бъдещите тенденции в NLU за изграждане на сложни AI системи.
Формат на курса
- Интерактивна лекция и дискусия.
- Много упражнения и практика.
- Практическо внедряване в лабораторна среда на живо.
Опции за персонализиране на курса
- За да поискате персонализирано обучение за този курс, моля свържете се с нас, за да уговорим.
План на курса
Въведение в Deep Learning за NLU
- Преглед на NLU срещу NLP
- Задълбочено обучение при обработка на естествен език
- Предизвикателства, специфични за моделите на NLU
Дълбоки архитектури за NLU
- Трансформатори и механизми за внимание
- Рекурсивни невронни мрежи (RNN) за семантичен анализ
- Предварително обучени модели и тяхната роля в NLU
Семантично разбиране и Deep Learning
- Изграждане на модели за семантичен анализ
- Контекстуални вграждания за NLU
- Задачи за семантично сходство и включване
Разширени техники в NLU
- Модели от последователност към последователност за разбиране на контекста
- Дълбоко обучение за разпознаване на намерение
- Трансфер на обучение в NLU
Оценяване на Deep NLU модели
- Метрики за оценка на производителността на NLU
- Обработка на пристрастия и грешки в дълбоки NLU модели
- Подобряване на интерпретируемостта в NLU системи
Scalaспособност и оптимизация за NLU системи
- Оптимизиране на модели за широкомащабни NLU задачи
- Ефективно използване на изчислителните ресурси
- Компресия и квантуване на модела
Бъдещи тенденции в Deep Learning за NLU
- Иновации в трансформаторите и езиковите модели
- Изследване на мултимодална NLU
- Отвъд NLP: Контекстуален и семантично управляван AI
Обобщение и следващи стъпки
Изисквания
- Усъвършенствани познания за обработка на естествен език (NLP)
- Опит с рамки за дълбоко обучение
- Запознаване с архитектурите на невронни мрежи
Публика
- Учени по данни
- Изследователи на AI
- Инженери за машинно обучение
Отворените курсове за обучение изискват 5+ участници.
Курс за обучение по Deep Learning for NLU: Beyond NLP Models - Booking
Курс за обучение по Deep Learning for NLU: Beyond NLP Models - Enquiry
Deep Learning for NLU: Beyond NLP Models - Консултантско запитване
Консултантско запитване
Предстоящи Курсове
Свързани Kурсове
Advanced Stable Diffusion: Deep Learning for Text-to-Image Generation
21 ЧасаТова водено от инструктор обучение на живо в България (онлайн или на място) е насочено към специалисти по данни на средно до напреднало ниво, инженери по машинно обучение, изследователи в дълбокото обучение и експерти по компютърно зрение, които желаят да разширят знанията и уменията си в дълбокото обучение за генериране на текст към изображение.
До края на това обучение участниците ще могат:
- Разберете усъвършенствани архитектури за дълбоко обучение и техники за генериране на текст към изображение.
- Внедрете сложни модели и оптимизации за висококачествен синтез на изображения.
- Оптимизирайте производителността и скалируемостта за големи масиви от данни и сложни модели.
- Настройте хиперпараметрите за по-добра производителност и обобщение на модела.
- Интегрирайте Stable Diffusion с други рамки и инструменти за дълбоко обучение
AlphaFold
7 ЧасаТова водено от инструктор обучение на живо в България (онлайн или на място) е насочено към биолози, които искат да разберат как AlphaFold работи и да използват AlphaFold модели като ръководства в своите експериментални изследвания.
До края на това обучение участниците ще могат:
- Разберете основните принципи на AlphaFold.
- Научете как работи AlphaFold.
- Научете как да интерпретирате AlphaFold прогнози и резултати.
Applied AI from Scratch
28 ЧасаТова е 4-дневен курс, представящ AI и неговото приложение. Има опция да имате допълнителен ден за предприемане на AI проект след завършване на този курс.
Deep Learning for Vision with Caffe
21 ЧасаCaffe е рамка за дълбоко обучение, създадена с мисъл за изразяване, скорост и модулност.
Този курс изследва приложението на Caffe като рамка за задълбочено обучение за разпознаване на изображения, използвайки MNIST като пример
Публика
Този курс е подходящ за Deep Learning изследователи и инженери, които се интересуват от използването на Caffe като рамка.
След завършване на този курс делегатите ще могат да:
- разбиране на структурата и механизмите за внедряване на Caffe изпълнява задачи по инсталация/производствена среда/архитектура и конфигурация оценява качеството на кода, извършва отстраняване на грешки, мониторинг прилага разширено производство като модели за обучение, прилагане на слоеве и регистриране
Deep Learning Neural Networks with Chainer
14 ЧасаТова водено от инструктор обучение на живо в България (онлайн или на място) е насочено към изследователи и разработчици, които желаят да използват Chainer за изграждане и обучение на невронни мрежи в Python, като същевременно правят кода лесен за отстраняване на грешки.
До края на това обучение участниците ще могат:
- Настройте необходимата среда за разработка, за да започнете да разработвате модели на невронни мрежи.
- Дефинирайте и внедрявайте модели на невронни мрежи, като използвате разбираем изходен код.
- Изпълнявайте примери и модифицирайте съществуващите алгоритми, за да оптимизирате моделите за обучение на задълбочено обучение, като същевременно използвате GPU за висока производителност.
Using Computer Network ToolKit (CNTK)
28 ЧасаComputer Network ToolKit (CNTK) е Microsoft с отворен код, мулти-машина, много-GPU, високоефективна RNN обучителна рамка за машинно обучение за реч, текст и изображения.
Публика
Този курс е насочен към инженери и архитекти, които имат за цел да използват CNTK в своите проекти.
Computer Vision with Google Colab and TensorFlow
21 ЧасаТова водено от инструктор обучение на живо в България (онлайн или на място) е насочено към професионалисти на напреднало ниво, които желаят да задълбочат разбирането си за компютърното зрение и да изследват възможностите на TensorFlow за разработване на сложни модели на зрение с помощта на Google Colab.
До края на това обучение участниците ще могат:
- Изградете и обучете конволюционни невронни мрежи (CNN) с помощта на TensorFlow.
- Използвайте Google Colab за мащабируемо и ефективно разработване на модели, базирани на облак.
- Прилагане на техники за предварителна обработка на изображения за задачи с компютърно зрение.
- Внедрете модели на компютърно зрение за приложения в реалния свят.
- Използвайте трансферно обучение, за да подобрите ефективността на моделите на CNN.
- Визуализирайте и интерпретирайте резултатите от моделите за класификация на изображения.
Deep Learning with TensorFlow in Google Colab
14 ЧасаТова водено от инструктор обучение на живо в България (онлайн или на място) е насочено към учени и разработчици на данни на средно ниво, които желаят да разберат и прилагат техники за задълбочено обучение, използвайки средата Google Colab.
До края на това обучение участниците ще могат:
- Настройте и навигирайте Google Colab за проекти за дълбоко обучение.
- Разберете основите на невронните мрежи.
- Приложете модели за дълбоко обучение, като използвате TensorFlow.
- Обучете и оценете модели за дълбоко обучение.
- Използвайте разширени функции на TensorFlow за задълбочено обучение.
Deep Learning for NLP (Natural Language Processing)
28 ЧасаВ това водено от инструктор обучение на живо в България участниците ще се научат да използват Python библиотеки за НЛП, докато създават приложение, което обработва набор от снимки и генерира надписи.
До края на това обучение участниците ще могат:
- Проектирайте и кодирайте DL за NLP, като използвате Python библиотеки.
- Създайте Python код, който чете значително огромна колекция от снимки и генерира ключови думи.
- Създайте Python код, който генерира надписи от откритите ключови думи.
Edge AI with TensorFlow Lite
14 ЧасаТова водено от инструктор обучение на живо в България (онлайн или на място) е насочено към разработчици на средно ниво, специалисти по данни и AI практици, които желаят да използват TensorFlow Lite за Edge AI приложения.
До края на това обучение участниците ще могат:
- Разберете основите на TensorFlow Lite и ролята му в Edge AI.
- Разработвайте и оптимизирайте AI модели с помощта на TensorFlow Lite.
- Разположете TensorFlow Lite модели на различни крайни устройства.
- Използвайте инструменти и техники за преобразуване и оптимизиране на модела.
- Внедрете практически Edge AI приложения с помощта на TensorFlow Lite.
Accelerating Deep Learning with FPGA and OpenVINO
35 ЧасаТова водено от инструктор обучение на живо в България (онлайн или на място) е насочено към специалисти по данни, които желаят да ускорят приложенията за машинно обучение в реално време и да ги внедрят в мащаб.
До края на това обучение участниците ще могат:
- Инсталирайте OpenVINO инструментариума.
- Ускорете приложение за компютърно зрение с помощта на FPGA.
- Изпълнете различни CNN слоеве на FPGA.
- Мащабирайте приложението в множество възли в Kubernetes клъстер.
Distributed Deep Learning with Horovod
7 ЧасаТова водено от инструктор обучение на живо в България (онлайн или на място) е насочено към разработчици или специалисти по данни, които желаят да използват Horovod за провеждане на разпределени обучения за задълбочено обучение и да го мащабират, за да работят в множество GPU паралелно .
До края на това обучение участниците ще могат:
- Настройте необходимата среда за разработка, за да започнете да провеждате обучения за дълбоко обучение.
- Инсталирайте и конфигурирайте Horovod за обучение на модели с TensorFlow, Keras, PyTorch и Apache MXNet.
- Мащабирайте обучението за дълбоко обучение с Horovod, за да работите на множество GPU.
Deep Learning with Keras
21 ЧасаТова водено от инструктор обучение на живо в България (онлайн или на място) е насочено към технически лица, които желаят да приложат модел на дълбоко обучение към приложения за разпознаване на изображения.
До края на това обучение участниците ще могат:
- Инсталирайте и конфигурирайте Keras.
- Бързо прототипирайте модели за дълбоко обучение.
- Реализирайте конволюционна мрежа.
- Внедряване на повтаряща се мрежа.
- Изпълнете модел на задълбочено обучение както на CPU, така и на GPU.
Introduction to Stable Diffusion for Text-to-Image Generation
21 ЧасаТова водено от инструктор обучение на живо (онлайн или на място) е насочено към специалисти по данни, инженери по машинно обучение и изследователи на компютърно зрение, които желаят да използват Stable Diffusion за генериране на висококачествени изображения за различни случаи на употреба.
До края на това обучение участниците ще могат:
- Разберете принципите на Stable Diffusion и как работи за генериране на изображения.
- Изградете и обучете Stable Diffusion модели за задачи за генериране на изображения.
- Приложете Stable Diffusion към различни сценарии за генериране на изображения, като вписване, изрисуване и превод от изображение към изображение.
- Оптимизирайте производителността и стабилността на Stable Diffusion модели.
Tensorflow Lite for Microcontrollers
21 ЧасаТова водено от инструктор обучение на живо в България (онлайн или на място) е насочено към инженери, които желаят да пишат, зареждат и изпълняват модели за машинно обучение на много малки вградени устройства.
До края на това обучение участниците ще могат:
- Инсталирайте TensorFlow Lite.
- Заредете модели за машинно обучение на вградено устройство, за да му позволите да открива реч, да класифицира изображения и т.н.
- Добавете AI към хардуерни устройства, без да разчитате на мрежова свързаност.